
Download free eBooks at bookboon.com

Perl for Beginners

60

Arrays

12 Arrays

12.1 Tables with numbered cells

So far, all our variables have been scalars, with names having $ as their prefix. We said that apart from
scalars, for individual data items, Perl has two other types of variable, for organized sets of items: arrays,
and hashes, with prefixes @ and % respectively. The array type is found in most modern programming
languages. The hash type is less widespread, more of a Perl speciality (though there are other languages
which include it); we shall look at hashes in chapter 17.17

An array is like a table, which as a whole has a single name, and within which different pieces of data
occupy successive numbered rows. (Tables can have many columns as well as many rows, but for the
moment think of an array as a table with a single column of cells.) This being the computing world, the
initial cell of the table is numbered zero, rather than one.

Consider again our county-population data. So far, we have seen how to read these data in from a rather
messy file, and print them out again as a reformatted, neater file. But we might want to hold the data
within our program, so that later activities within the program can refer to various of these data items. One
way to do this will be to use the input lines to build up a pair of arrays, @countyNames and
@countyPops, so that @countyNames holds the county names in a fixed sequence, and
@countyPops holds the population figures in the corresponding sequence. Then we can ask a question
like “What is the name of county number 11?” by writing:

print "$countyNames[11]\n";

to which the answer will be:

Essex

The answer will be Essex rather than Gloucestershire, because Bedfordshire will be county
number 0 not number 1 – see above. More important, notice the dollar sign in the print statement. We
have introduced the idea of arrays and said that @countyNames is an array, hence its name begins
with the @ symbol. But when we put square brackets after the array name in order to pick out an
individual member of the array, the prefix changes to the dollar sign.

This is an odd feature of Perl which beginners usually find confusing, so it deserves a little discussion.
Logically, one might expect that if, say, @fruits is an array, then the nth member of @fruits
would be identified as @fruits[n], so that one could write a statement like:

print @fruits[5]; # wrong!

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

61

Arrays

That isn’t how Perl works. Because item 5 of the @fruits array is an individual item, one has to write:

print $fruits[5];

damson

– even though the symbol $fruits on its own, without following square brackets, refers to nothing.

Apparently, when Perl was created, the inventor believed that users would find this the more natural thing.
He was wrong there. It is generally recognized now that this decision was unfortunate (and we are
promised that when Perl 6 eventually replaces the current version Perl 5, the decision will be reversed).
But we shall be living with Perl 5 for a long time yet, so we just have to get used to this oddity. That is not
particularly difficult to do, once we face up to the fact that the rule is different from what most of us
instinctively expect.

12.2. An example

Let’s now adapt the code (12) which we used to print out the tidied-up county data, so that it instead
creates a pair of arrays containing the data: an array @countyNames containing the county names, and
an array @countyPops containing the population figures in the corresponding rows. (This is not the
ideal approach – we shall see a better one shortly; but it is the easiest way to start with.)

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Perl for Beginners

62

Arrays

Where stretches of code do not change, instead of copying them out here I shall just write [as
before], so that we can focus on the areas of code which do change.

(13)

1 open(INFILE, "<../data/pops/countyData.txt")
 or die "Cannot open input file\n";
2 $i = 0;
3 while ($a = <INFILE>)
4 {
5 if [as before]
6 elsif [as before]
 ⋮
10 else
11 {
12 $name = $1;
13 $population = $2;
14 $name =~ s/(\S)\s+(\S)/$1_$2/g;
15 $population *= 1000;
16 $countyNames[$i] = $name;
17 $countyPops[$i] = $population;
18 ++$i;
19 }
20 }
21 close(INFILE);

In line 13.1 we open the input file the same as before, but this time we shall not be printing out a reformatted
file, so there is no open(OUTFILE, …). A new thing we do need to do before embarking on the while
loop is to set up an index variable, $i, which will keep count of positions within the array; on each pass
through the loop it will ensure that the name and population of the current county are placed in corresponding
rows in the two arrays, and at the end of the loop $i will be increased by 1 ready for the next pass.

The initial row of any array is row zero, so 13. 2 sets $i to that value. Of course, if human users of the
software are going to find it really awkward to think about “county number 0”, nothing prevents us giving
$i the initial value 1, so that Bedfordshire will become county no. 1, and row 0 in both arrays will be
“wasted” (it is not like wasting real physical resources!) But if you choose to do that, you will have to
remember that you have done it, and make sure that in the future you never carelessly try to use the value
of $countyNames[0] or $countyPops[0] – which would be zero or rubbish values. It is
probably easier in the long run to get used to the idea that the initial item of any array is item zero.18

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

63

Arrays

Within the while loop, there is no change to the way that if and elsif deal with blank lines and
lines with ill-formed contents, or to how the temporary variables $1 and $2 are replaced with $name
and $population in the else block. Line 13.14 replaces spaces in county names with underline
characters as before. But we do not want the population figures to be given commas grouping them into
threes, as in the old line 12.16. That was done to turn a number into a string easily grasped by human eyes;
but in our @countyPops array we shall want the populations to be actual numbers that the machine
can calculate with, so that subsequent program code will be able to use the numerical data. So our new
line 13.15 simply multiplies the figures taken from the input file by 1000, so that counts of thousands
become counts of individuals, rounded to the nearest thousand.

Then, 13.16 puts the current county name in row $i of @countyNames, 13.17 puts the current county
population in the corresponding row of @countyPops, and 13.18 increments $i, ready for the next
pass through the loop.

Notice that we did not have to “warn” Perl that we were going to set up arrays @countyNames and
@countyPops – as soon as a value is first assigned to some row of an array, if the array does not yet
exist it is automatically created without further ado. (In this case we did not even mention the names
@countyNames and @countyPops with @ prefixes; but the square brackets in e.g.
$countyNames[$i] tell Perl that what precedes them is an array name.)

Line 13.21 closes INFILE as before, but since we never opened an output file, of course we do not now
have to close it.

The chunk of code (13) is not intended as a complete program on its own. That does not mean that it lacks
some particular elements which Perl requires to occur in any complete program. It doesn’t; a “program” in
Perl is simply a sequence of statements, so we could call (13) a program if we wanted to. But as a
complete program (13) would be no practical use, because it produces no output. It is intended as the
beginning of a program, which uses the countyData file in order to create data structures (the arrays
@countyNames and @countyPops) which can be used by code that will be added later in the
program, in order to do whatever we may want to do with the data.

Obviously, we can print out individual values:

print($countyNames[36], "\t", $countyPops[36], "\n");

East_Sussex 710000

Often, we shall want to write code to do something to each element of an array in turn, and chapter 14 will
show us how to do that.

(Since (13) is not intended as a complete program, but it seems too long to call a “snippet”, I shall call it a
“code-chunk”. Later chapters will extend (13) into programs which produce output.)

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

64

Arrays

12.3 Assigning a list to an array

Code-chunk (13) put elements into the @countyNames and @countyPops arrays one by one; but
sometimes we will want to set up an array and initialize its contents in one go. The easiest way to do that
is to put on the right of the equals sign a list of the array members, separated by commas and with round
brackets around the list:

@words = ("the","quality","of","mercy","is","not","strained");
@numbers = (1, 2, 3, 4, 5);

Alternatively we could of course put the items in one by one, e.g.:

$words[0] = "the";
$words[1] = "quality";

⋮
$words[6] = "strained";

but the bracket-and-comma notation takes less typing.

We can display the contents of an array by giving an array name as argument to a print statement. But,
if we do this in the obvious way, what gets displayed are the array elements and nothing else. Thus, if
@words and @numbers have the values as above:

print(@words, "\n", @numbers, "\n");

thequalityofmercyisnotstrained
12345

This is perfectly logical, but not very user-friendly. The trick is to include the array names within the
double quotation marks, in which case the array elements are displayed separately:

print "@words\n@numbers\n";

the quality of mercy is not strained
1 2 3 4 5

12.4 Adding elements to and removing them from arrays

We have seen how to create an array and populate it with a long list of values. But often, we want to work
with individual items of an array. We already know how to do that using the square-bracket notation.
Continuing with the array @words as above, the statement:

$a = $words[3];

will assign the string "mercy" to $a, leaving @words unchanged. The statement:

$words[3] = "generosity";

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

65

Arrays

will change element 3 of @words from "mercy" to "generosity", without altering the number
of elements in @words.19

Quite commonly, though, we want to add an element or elements to an array, increasing its length; or to
remove element(s) from an array, using their values and leaving the array shorter.

The functions push() and pop() respectively add elements to and remove elements from the back
of an array. The functions shift() and unshift() respectively remove elements from and add
elements to the front of an array. The “remove” functions pop() and shift() remove one item at a
time from the respective array-end and return it as their value; but the “add” functions push() and
unshift() can be used to add either a single item or a list of items.

This is most easily illustrated by example. In code-snippet (14), the right-hand column shows what the
array @colours contains after each successive statement is executed:

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Perl for Beginners

66

Arrays

(14)

1 @colours = ("red", "green"); red green
2 $colour1 = shift(@colours); green
3 push(@colours, "blue", "grey"); green blue grey
4 $colour2 = pop(@colours); green blue
5 unshift(@colours, "red", "black"); red black green blue
6 print "$colour1\t$colour2\n";

red grey

(Notice that when a list of items is “unshifted” onto the front of an array, the items end up in the array in
the same order as they were in the list. Line 14.5 does not first move "red" onto the front of
@colours and then move "black" into the new front position before "red".)

12.5 Other operations on arrays

We can create a shorter array as a slice from the middle of a longer array:

@words = ("the","quality","of","mercy","is","not","strained");
@phrase = @words[1..3];
print "@phrase\n";

quality of mercy

The word the is element 0 of @words, so quality is element 1; note the use of two dots (rather than three
dots as in ordinary English) to separate the end-points of the slice.

The functions split() and join() convert between strings and arrays. The former makes a string into
an array of strings; it standardly takes two arguments: a pattern, between slashes (as in pattern-matching), and
the string to be split – the pattern is used to identify places where the string should be split. Thus:

$Rev = "At Flores in the Azores Sir Richard Grenville lay";
@words = split(/ /, $Rev);
print($words[1], "\t", $words[4], "\n");

Flores Azores

Here, the pattern / / (i.e. a single space character between slashes) means “treat spaces as places to
split”.20 If the pattern were //, the empty pattern, then the string would be split into its individual
characters, including spaces.

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

67

Arrays

Conversely, join() links the elements of an array into a single string, with the array elements
separated by the first argument:

@words = ("the","quality","of","mercy");
$colonString = join(":", @words);
print($colonString, "\t", length($colonString), "\n");

the:quality:of:mercy 20

The functions split() and join() give us an alternative to line 14 of (13) as a way to replace
whitespace in a string by single underline characters. We could change 13.14 to:

@nameparts = split(/\s+/, $name);
$name = join("_", @nameparts);

– i.e. treat sequences of one or more whitespace characters as places to split the line, then join the
resulting array @nameparts using the underline character. This two-line sequence can be collapsed
into one line:

$name = join("_", split(/\s+/, $name));

– here the second argument to join() is whatever results from applying split() to its arguments.
Even as a single line, this is no shorter than the original line 13.14 – it is rather longer, in characters; but
its logic is easier to grasp.

(I make no apology for the original version of 13.14, though: that offered a useful illustration of the
workings of the Perl pattern matcher. Often one must use the pattern matcher – no convenient alternative
using built-in functions will do the job.)

A particularly powerful built-in function applicable to arrays is map(), which produces a new array by
applying a specified operation to each element of an existing array. The first argument to map() defines
the operation to apply, as an expression within which the element to which it is applied is represented by the
symbol $_. The second argument gives the array whose elements are to be operated on. Thus:

(15)

1 @numbers = (1, 2, 3, 4, 5);
2 @words = ("end","of","chapter","twelve");
3 @squares = map($_**2, @numbers);
4 @capWords = map(uc($_), @words);
5 print("@squares\t@capWords\n");

1 4 9 16 25 END OF CHAPTER TWELVE

http://bookboon.com/

